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Abstract

This paper proposes an essay concerning the understanding of human behaviours and crisis management of crowds in extreme 
situations, such as evacuation through complex venues. The first part focuses on the understanding of the main features of the 
crowd viewed as a living, hence complex system. The main concepts are subsequently addressed, in the second part, to a critical 
analysis of mathematical models suitable to capture them, as far as it is possible. Then, the third part focuses on the use, toward 
safety problems, of a model derived by the methods of the mathematical kinetic theory and theoretical tools of evolutionary game 
theory. It is shown how this model can depict critical situations and how these can be managed with the aim of minimizing the risk 
of catastrophic events.
© 2016 Elsevier B.V. All rights reserved.
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1. Plan of the paper

The study of human crowds is a challenging interdisciplinary research field that is motivated not only by the 
difficulties generated by the complexity features typical of large living systems, but also by the benefits that the study 
of these systems can bring to society. Indeed, the study involves challenging analytic and computational problems, 
generated by the derivation of models and by their application to practical cases, while the support that models can 
give to decision making in critical situations can contribute to the safety of citizens.
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The scientific community agrees that an interdisciplinary approach is necessary to tackle the aforementioned con-
ceptual difficulties. The benefit for our society can be important considering that the optimisation of pedestrian flow 
can reduce the time spent in non-productive activities; ergo reducing the cost of transportation and reducing pollution. 
Moreover, critical cases, such as sudden and rapid evacuation through complex venues, can occur and affect the safety 
of walkers. For example, stress induced by the perception of danger, can invoke certain behaviours that may result in 
dangerous dynamics. Realistic modelling and simulation of crowd behaviours could help to mitigate such risks and 
lead to significant benefits for society.

For example, simulations can be used to gain insights into possible problems regarding the evacuation of public 
buildings, metro stations, and ships early in their design phase and/or understanding of how to guide crowd move-
ment in different situations. What is more, pedestrian dynamics is interconnected to several other fields ranging from 
engineering and architecture to socio-psychology. Our paper specifically focuses on the latter with special attention to 
account for human behaviours in crowd modelling and their possible support to crisis managing.

The existing literature on general topics of mathematical modelling is reported in some survey papers, which offer 
different view points and modelling strategies to applied mathematicians in a field where a unified, commonly shared 
approach does not yet exist. In more detail, the review paper [53] presents and critically analyses the main features 
of the physics of crowds viewed as a multi-particle system and focuses on the modelling at the microscopic scale for 
pedestrians undergoing individual based interactions. The survey [61] introduces the modelling at the macroscopic 
scale, by methods analogous to those of hydrodynamics, where one of the most challenging conceptual difficulties 
is in the understanding of how the crowd, viewed as a continuum, selects the velocity at which pedestrians move. 
The survey [24] proposes the concept of the crowd as a living, hence complex system, and subsequently the search 
of mathematical tools suitable to take into account the complexity features of the system, as far as possible. Scaling 
problems and mathematical aspects are treated in the survey [18] and more recently in the book [38]. A critical 
overview of crowd modes is proposed in [44,103].

This literature indicates that the classical modelling approaches can be developed at three observation and repre-
sentation scales. In detail:

• The microscopic description, which refers to individually identified entities, while the overall state of the system 
is delivered by individual position and velocity of pedestrians. Mathematical models are generally stated in terms of 
systems of ordinary differential equations.

• The macroscopic description is such that the state of the system is described by gross quantities, namely density, 
linear momentum, and kinetic energy, regarded as dependent variables of time and space. These quantities are obtained 
by local average of the microscopic state, while models are stated by systems of partial differential equations.

• The mesoscopic description is based on kinetic theory methods, where the microscopic state of pedestrians is still 
identified by the individual position and velocity, however their representation is delivered by a suitable probability 
distribution over the aforementioned microscopic state. Models describe the evolution of the said distribution function 
by means of nonlinear integral–differential equations.

It is known that none of the aforesaid scaling approaches are fully satisfactory. In fact, known models at the 
microscopic scale do not account for multiple interactions and it may difficult, if not impossible, to use data from 
microscopic observations to infer the crowd dynamics in a different but similar situation. On the other hand, the 
heterogeneous behaviour of pedestrians get lost in the averaging process needed to derive the macroscopic models 
which therefore totally disregard this important feature. Mesoscale models appear to be more flexible as they can 
tackle the previously mentioned drawbacks, but additional work is needed to develop them toward the challenging 
objectives treated in this paper.

In particular, a multiscale approach is required, where the dynamics at the large scale needs to be properly related 
to the dynamics at the small scales [12,16,37], hyperbolic and/or parabolic [14,15]. In detail, individuals represent 
the microscopic scale, their psycho-mechanical strategy is the sub-microscopic scale, while collective behaviours are 
observed at the macroscopic scale. Recent developments in kinetic theory (mesoscopic scale) lead to this challeng-
ing target, as we shall see in the next sections. This result is achieved by introducing, in addition to the mechanical 
variables, further internal variables in the microscopic state to account for the behavioural interactions between pedes-
trians. Then these variables can be modified by interactions and have an important influence on the dynamics. The 
concept of sub-microscopic scale is properly presented in [100], where the authors refer the development of the walk-
ing strategy to individual, hence heterogeneous, minds.



N. Bellomo et al. / Physics of Life Reviews 18 (2016) 1–21 3
Moreover, an important aspect to be taken into account is that emerging behaviours are often related to large 
deviations although the qualitative behaviours are often reproduced. This feature is related to the fact that small 
deviations in the inputs create large deviations in the output. Some of these extreme events are not easily predictable, 
however a rational interpretation can sometimes explain them once they have appeared. The use of the term “black 
swan” is a metaphoric expression used by Taleb [86] to denote these events. The search for large deviations in crowd 
dynamics has motivated various empirical studies on this challenging topic, for instance [54,70,84,93].

Although the literature in the field is rapidly growing and is already vast, far less developed are the contributions 
related to validation dynamics and evacuation processes. Nevertheless, some important contributions need to be men-
tioned such as the review paper [99]. This reference gives an important contribution to the process of decision support 
to safety of human crowds in crisis situations and provides a valuable support to our paper. This point can be stressed 
by quoting a few sentences from [99], selected, among several ones, as specifically pertinent to the aims of our paper:

The importance of understanding human behaviour in crowds is undisputed. It is required for ensuring that proper 
support can be given to crowd managers in preparation and during crowd event.

Crowd management practice involves accessing and interpreting a wide variety of information sources, predict-
ing crowd behaviours as well as deciding the use of a range of possible, highly context-dependent intervention 
mechanisms.

We argue that the lack of adequate decision-support is partially due to the status of the majority of current crowd 
models.

The reasoning above indicates that the overall field needs new ideas to be developed in suitable research programs. 
Accordingly, this essay is devoted to a critical analysis of the literature concerning crowd modelling in real evacuation 
dynamics focusing on a support to crisis situations, where modelling and computations are only the first step of a 
challenging path leading to the improvement of the safety and well-being of citizens. The hallmarks of this path are 
as follows:

1. Understanding the main features of a human crowd viewed as a “social” hence complex, system;
2. Strategy by which mathematical sciences can contribute to understand the behavioural dynamics of crowds;
3. How simulations can be obtained to depict the dynamics through complex venues;
4. Understanding how the crowd behaves in extreme situations such as stress induced by perception of dangerous 

situations;
5. What has been done and should be done to respond effectively to crisis situations.

These topics are motivated by research activity, which is also organized within large research projects. As an 
example the project [47] of the European Union is treated in the next sections, where each of them corresponds to the 
aforementioned key problems.

Section 2 refers to the first hallmark with the aim of selecting the most important features of crowds viewed as 
living systems. The contents is presented in two steps, where the first one refers to normal conditions, while the 
second one focuses on understanding crowd behaviours in extreme situations such as evacuation. The contents are 
presented at a qualitative level, namely without analytic formalisation. However, all reasonings offer the conceptual 
background toward the strategic objective of designing mathematical models suitable to depict the complexity features 
of the crowd and to reproduce empirical data within reasonable bounds of accuracy.

Section 3 transfers the concepts proposed in Section 2 into a strategy to derive models suitable to capture the 
aforementioned features. The approach is that of the so called “mathematical approach of the kinetic theory of active 
particles” [23], where the overall state of the system is represented by a probability distribution over the microscopic 
states, while interactions, which are nonlocal and nonlinearly additive, are modelled by theoretical tools of evolu-
tionary stochastic game theory. A methodological approach toward the validation of models is proposed, which also 
accounts for the decision making process to improve human safety. The contents are limited to a qualitative framework 
leaving the mathematical formalisation to the next section.
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Section 4, after a survey on the existing literature on crowd modelling by kinetic theory methods, reports the 
essential analytic and computational knowledge. This can be of interest for applied mathematicians active in this 
challenging research field. Thus, the presentation of the preceding sections, that was mainly focused on qualitative 
issues, meet the formalisation which is necessary for the simulation of real evacuation dynamics. Modelling requires 
advanced mathematical tools induced both by large dimensions and the complexity features of crowds viewed as a liv-
ing system. The search of oversimplified approaches generally neglects important features that can play an important 
influence on the overall dynamics.

Section 5 presents some simulations corresponding to a complex situation. The aim consists in showing the type of 
results that can be achieved and could contribute to decision making to support crisis; the term “crisis management” 
is also often used [104]. A detailed analysis of the influence of stress conditions on crowd dynamics is performed by 
focusing both on the computation of evacuation time and on excessive concentration of individuals.

Section 6 focuses on the main objective of this essay, namely the support that can be given to crisis management 
for greater situational awareness of crowd dynamics in evacuation situations, leading to a safer process. A critical 
analysis of the knowledge in the field looks ahead to perspectives toward a deeper understanding of the complex 
systems under consideration of safety objectives. An important topic, treated in this section, is the design of predictive 
engines suitable to support the aforementioned decision process. A predictive engine can exploit large databases by 
using real dynamics and simulations based on the modelling approach reviewed in this paper.

Section 7 proposes a critical analysis of the state of the art as it has been reviewed in our paper and proposes some 
research perspectives.

It is worth stressing that the whole contents of this paper rely on the concept that a crowd is a living system. Hence, 
human behaviours have to be taken into account both in the modelling and in crisis management. An interdisciplinary 
approach appears to be a necessary feature of this paper. Such a need has suggested to split the modelling sections 
in two parts which deal with general concepts and formalised equations. Therefore, the readership can be broad as 
the devoted mathematician can intensively focus on Section 4 and related bibliography, while the reader interested in 
applications can skip over this section and go directly to the following sections.

2. Human crowds as a large living system in evacuation dynamics

The dynamics of a crowd, as already mentioned, cannot be simply confined to mechanical and deterministic causal-
ity principles. In fact, the heterogeneous behaviours of pedestrians and their social dynamics can have an important 
influence over the dynamics and, in particular, in the strategy they use to achieve a certain objective of their movement 
in interactions with other pedestrians [20]. This strategy is not simply an individual one, it depends on the collective 
one which, due to nonlocal interactions, can find a consensus toward a commonly shared strategy.

This section tackles the first key problem:

Understanding the main features of a human crowd
viewed as a “social” hence complex system.

Let us now consider the assessment of the most important complexity features of a crowd viewed as a living system 
within the framework that our society is a complex system [8,11,73]. The general strategy proposed in [23] is that 
the mathematical approach to modelling of living, hence complex, systems should take into account their features. 
These general considerations should be focused on the specific field of application treated in this paper, namely the 
modelling of crowds in evacuation dynamics [1,7,12,13,20]. In particular, evacuation dynamics shows the appearance 
of special stress conditions. Some stress conditions can be amplified in special venues such as lively foot-bridges [90,
91]. Contributions to understand the psychology of a crowd are, selected among various ones, the following [2,32,33,
42,98], where stress can end up with panic [66] and even with aggressive behaviours [62].

Bearing all above in mind, let us give, referring to [55], a possible definition of how a crowd can be defined:

Definition of crowd: Agglomeration of many people in the same area at the same time. The density of people is 
assumed to be high enough to cause continuous interactions, or reactions, with other individuals,

while, according to [77] evacuation dynamics can be defined as follows:
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Evacuation: Physical movement of people of a temporary nature, that collectively emerges in coping with commu-
nity threats, damages or disruptions.

This definition deserves additional study as it should be related to the scaling problem and, as far as it is possible, to 
dimensionless numbers suitable to provide a quantitative interpretation suitable to distinguish different flow regimes. 
Waiting for such a formalisation and, revisiting [20], we look at the following complexity features:

1. Ability to express a strategy: Walkers are capable to develop specific strategies, which depend on their own 
state and on that of the entities in their surrounding environment. Different strategies can appear in the dynamics. 
Examples include pedestrians who move toward different directions, and a crowd in a public demonstration with a 
small groups of rioters, whose aim is not the expression of a political–social opinion, but instead to create conflict 
with security forces.

2. Heterogeneity and hierarchy: The ability to express a strategy is heterogeneously distributed, referring to both 
the differences in walking abilities, and also to social expressions. This feature can include a possible presence 
of leaders, who aim to drive the crowd to their own strategy. Leaders can contribute, in evacuation dynamics, 
to drive walkers toward appropriate strategies including the selection of optimal routes among the available 
ones.

3. Nonlinear and nonlocal interactions: Interactions are nonlinearly additive and involve immediate neighbours, 
but also distant individuals. Interactions refer both to mechanical and social dynamics and include those with 
the external environment and the venue, where the walkers move. A key example is given by the onset and 
propagation of stress conditions, which may be generated in a certain restricted area and then diffused over 
the whole crowd. These conditions can have an important influence over dynamical behaviours of walkers 
[56].

Of course, additional features could be mentioned, but the selection has been limited to a minimal number that, 
according to the authors’ bias, should be included in the modelling approach. These features hold true in all physical 
situations. However some of them can be amplified in evacuation dynamics. In fact, in certain conditions, for exam-
ple overcrowding, avoiding congestion or following others, do create emergent behaviours which are not observed 
during normal conditions. This topic has been widely and carefully investigated by Helbing and coworkers [54–56]. 
Summarizing the main features:

• Unanticipated and unintended irregular motion of individuals into different directions due to strong and rapidly 
changing forces in crowds of extreme density;

• The so called faster-is-slower effect, namely increase of the individual speed but toward congested area, rather 
than the optimal directions, which corresponds to an increase of evacuation time;

• Breaking of cooperative behaviours due to reactions to an event which, in several cases, creates stress.

The above rationale has to be properly related on the understanding of crowd psychology and of the way it affects 
the dynamics of interacting individuals. Dealing with this challenging, but also fascinating topic [64], goes far beyond 
the stream of this survey. Indeed, it deserves an additional survey. Some concise ideas are given first on general issues 
and, subsequently, focusing on the specific topic of this paper.

An important reference is the PhD Thesis [98], more in detail Chapter 2, where it is observed that the first essays on 
this topic looked at crowd behaviours as a sequence of rational choices, while more recently the so called “irrational 
behaviors” have been accounted for. Indeed, this is not a peculiarity of crowd psychology as it is witnessed in several 
fields of soft sciences as observed in [3] for economical and social sciences and in [19] for biological sciences.

Going into more details and specifically referring to Chapter 2 of [98], the author indicates five so called “myths”
[82] that can be viewed as an important feature of crowds:

• Irrationality: Accounting for the idea that individuals in a crowd lose rational thought;
• Emotionality: Individuals in a crowd become more emotional up to shift to riot behaviour; It is to be noted that 

crowds were seen as an equivalent of riots.
• Suggestibility: Individuals in a crowd are more likely to obey or imitate;
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• Spontaneity: Conveys the idea that in a crowd violence occurs more suddenly;
• Anonymity: Individuals in a crowd feel more anonymous;
• Uniformity/Unanimity: Conveys the idea that all individuals in a crowd act in the same way.

The author discusses about the use and misuse of term “irrational” to be viewed is often used when people are not 
behaving in what is seen as the most effective way to achieve a goal, like fleeing out of a building while not following 
the emergency exits.

The main point, according to the authors bias, is that the all above behaviours are present in a crowd in an heteroge-
neous way and that specific circumstances, such as evacuation in stress conditions enhance some of them. Therefore, 
the modelling approach should include all of them, heterogeneity, as well as the heterogeneous behaviour of individ-
uals and the growth of some of them also induced by collective learning [30].

All aforementioned features have to be accounted for by the mathematical tools developed to model the dynamics 
of a crowd. Subsequently, computational simulations can provide a forecast of the movement of crowds, which can be 
applied to evacuation processes. This challenging and strategic objective needs not only advanced mathematical tools, 
but also a deep understanding of human behaviour and the use of technological devices to detect the main features of 
the crowd. The output delivered by computational models can hopefully support the decision making process needed 
to tackle crisis situations.

3. Towards a modelling and validation strategy

This section proposes a methodological approach to modelling and validation of crowd dynamics, thus tackling the 
second key problem proposed in Section 1, namely

Strategy by which mathematical sciences can contribute
to understand the behavioural dynamics of crowds.

The modelling strategy is presented at a qualitative level leaving the mathematical formalisation to Section 4. 
The contents are referred to the behavioural analysis proposed in Section 2 and the concepts of behavioural 
crowd dynamics proposed in paper [20]. In fact, pedestrians develop their own dynamics based on an individ-
ual interpretation from that of other individuals. As already mentioned, they develop a strategy, which is het-
erogeneously distributed and which depends on several factors to be included in the modelling approach. These 
reasonings lead to introduce the already mentioned concept of behavioural dynamics. Bearing this in mind, 
let us anticipate some terminology and some preliminary ideas of the approach that will be developed here-
inafter.

• Scaling: The complexity features of the crowd require a representation which accounts for the heterogeneous 
behaviour of walkers as well as the difficulty of their deterministic identification. Therefore it is quite natural 
looking at suitable developments of kinetic theory and statistical dynamics. Hence, the meso-scale representation 
is chosen. Moreover, the approach looks at the so-called kinetic theory for active particles precisely developed to 
model large systems of interacting entities [23].

• Functional subsystems: The overall system is subdivided into groups of pedestrians, called functional subsystems, 
who share common “mechanical” features, namely walking to the same direction (different for each group). This 
subdivision can also include the presence of leaders who operate to drive the evacuation dynamics toward the 
most appropriate routes.

• Representation: Each functional system is described by a probability distribution over the microscopic state of 
pedestrians, namely of the variable deemed to define their individual physical state. This is performed according 
to the hallmarks of a systems theory of social systems introduced in [3] based also on [22,43]. The probability 
distribution can account for walking with different abilities.

• Microscopic state: Pedestrians, namely the micro-system, are viewed as active particles, that have the ability of 
expressing a their own strategy, called activity. This ability can differ for different groups in the same crowd, as it 
is understood that the activity is heterogeneously distributed.
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• Interactions at the microscopic scale: Interactions are modelled by theoretical tools of evolutionary game the-
ory [74], where individual based interactions featuring the classical theory [72] are replaced by population 
interactions.

• From microscopic to collective behaviours: Pedestrians can communicate and develop a social dynamic. This 
communication can diffuse emotional state among walkers. Accordingly, they modify both strategy and dynamical 
rules followed in their dynamics. The output is a collective behaviour which can be observed over the whole 
crowd.

A general overview of this approach is presented in the survey paper [23], where the basic concepts of stochastic 
games are introduced. Applications to model crowd dynamics and social systems are proposed in [13] for a crowd in 
unbounded domain, and [12] for dynamics in complex venues.

Once a model has been derived, its validation needs to be performed. The validation of models basically means 
verifying their ability to reproduce empirical data, detected in steady flow conditions at a quantitative level and to 
depict emerging behaviours at a qualitative level in unsteady conditions. This agreement has to be achieved for a 
suitable choice of the model’s parameters.

The validation of crowd models is a challenging topic that, with a few exceptions such as [80,81,83] and a few oth-
ers, is poorly treated in the literature. The amount of empirical data available is quite limited for developing a detailed 
validation process. Hence, a strategy should be elaborated to exploit the existing data at the best of the panorama they 
offer. An additional difficulty is that the greatest part of empirical data sets are available at the macroscopic scale, 
while the modelling process needs a detailed understanding of the dynamics at the microscopic scale.

Quantitative validation of models will reproduce the features captured empirically using velocity and flux diagrams 
that are measured against speed in steady flow conditions.

Qualitatively, emerging behaviours observed in experiments, such as the creation of lanes in narrow streets and 
increasing evacuation time in stressful conditions, need to be reproduced in the model output.

Bearing all above in mind, let us define more precisely the validation strategy according to the following milestones 
concerning the performance of a model:

1. Ability to capture the complexity features of a crowd viewed as a living, hence complex, system.
2. Models should reproduce, even at a quantitative level, the velocity and fundamental diagrams of crowd traffic. 

Moreover, features such as the transition from free to congested flow, with possible changes to interaction rules, 
should be caught at least at a qualitative level.

3. Models should take into account that environmental conditions can determine different observable dynamics (e.g. 
different velocity and fundamental diagrams).

4. Models should qualitatively reproduce emerging behaviours. In particular they should catch the transition from 
small to large deviations by means of properly identified parameters. The mathematical approach should also 
pursue the idea of designing models able to describe, in evacuation dynamics, severe changes in the dynamics of 
individual interactions and, hence, in the overall crowd behaviour.

Focusing on the fundamental diagrams, it is worth stressing that their artificial insertion into the equations of 
the model takes computational models far from the real physics of the system. Indeed, velocity diagrams must be 
reproduced, as a consequence of interactions at the microscopic scale, and not implemented in the model. These 
diagrams depend also on the quality of the area where the crowd is located. A possible way to address this issue 
consists of introducing a parameter related to the quality of the venue where walkers move. High values of this 
parameter correspond to an increasingly better quality of the areas where walkers move.

4. Kinetic theory and stochastic games toward modelling crowd dynamics

The approach to modelling human crowd dynamics has been developed at the three scales already introduced 
in Section 1, namely microscopic, macroscopic, and mesoscopic. The literature on the first two scales is reported 
in some survey papers, which offer to applied mathematicians different view points and modelling strategies in a 
field where a unified, commonly shared, approach does not exists yet. The review paper [53] introduces the main 
features of the physics of crowd viewed as a multi-particle system and focuses on the modelling at the microscopic 
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scale for walkers undergoing individual based interactions. The survey [61] deals with modelling at the macroscopic 
scale by methods analogous to those of hydrodynamics, where one of the most challenging conceptual difficulties 
exists in understanding how the crowd, viewed as a continuum, selects the velocity direction and the speed by which 
pedestrians move [60]. The surveys [24] and [18] introduce the concept of the crowds as a living, hence complex 
system and subsequently the search of mathematical tools suitable to take into account, as far as it is possible, the 
complexity features of the system under consideration. The book [38] provides a review and critical analysis of the 
existing literature in the field mainly focused at the microscopic and macroscopic scale.

This section shows how the strategy proposed in the preceding section can be applied to derive specific models 
suitable to describe the specific dynamics studied in this paper. Therefore, we answer to the third key problem:

How simulations can be obtained to depict the dynamics through complex venues.

The need of computational models to optimise crisis management for crowds is clear. Indeed, models and simula-
tions offer a virtual representation of real dynamics that could form an important part of the information available to 
crisis managers, which in turn could improve citizens’ safety.

A presentation of this topic is proposed through four subsections which deal, respectively, with the following topics: 
(i) Survey models at the different scales referred to the specific mathematical structures to be used for the modelling 
approach; (ii) Motivations to select the mesoscopic scale and presentation of a specific model as an example to respond 
to the requirements of modelling evacuation dynamics; (iii) A critical analysis toward further improvements of the 
modelling approach in view of the crisis managing.

Simulations to test the predictive ability of the computational model evacuation problems are reported in the next 
Section 5 with special focus on the role of stress that might appear in the onset of crisis situations.

4.1. Scaling and mathematical structures

Let us consider the crowd in a venue with obstacles, inlet and outlet doors. The whole set of boundaries, doors and 
their localization is denoted, from now on, by �, while the quality of the venue where the dynamics occur is denoted 
by α ∈ [0, 1], where α = 0 stands for very bad quality that prevents the motion, while α = 1 corresponds to the best 
quality which allows walkers to use their highest possible velocity. An example of venue is given in Fig. 1.

Different mathematical structures correspond to each scale. These structures will be examined in the following to 
select the most appropriate one for simulations of evacuation processes.
• Microscale: The microscopic state is represented, for each i-th walker with i ∈ {1, . . . , N}, by position xi = xi (t) =
(xi(t), yi(t)) and velocity vi = vi (t) = (vi

x(t), v
i
y(t)). The dynamics refer to a large system of ordinary differential 

equations of the type⎧⎪⎨
⎪⎩

dxi

dt
= vi ,

dvi

dt
= Fi (x1, . . . ,xN,v1, . . . ,vN ;�,α),

(1)

where F(·) is a psycho-mechanical acceleration acting on the i-th walker based on the action of other walkers in 
his/her visibility/sensitivity zone. This acceleration depends on �, as interactions take into account this feature, which 
is not accounted for by classical particles until these materially collide with walls.

Often the second equation is also written in the following additive form

dvi

dt
=

n∑
j=1

ϕij (x1,xj ,v1,vj ;�,α),

with obvious meaning of notations.
The main contributions to this approach have been given by Helbing and coworkers [53,55]. Their approach has 

been applied also to the modelling of crisis situations [56]. An interesting contribution to compute bifurcation prob-
lems in transport equations with nonlocal interactions is proposed in [28].
• Macroscale: The macroscopic description is represented by the local density ρ = ρ(t, x) and the mean velocity
V = V (t, x), which is referred to maximum mean velocity VM of walkers.
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{
∂tρ + ∇x · (ρ V ) = 0 ,

∂t V + (V · ∇x)V = a[ρ,V ;�] , (2)

where a[ρ, V ; �] is a psycho-mechanical acceleration acting on walkers.
The acceleration term a refers not to the individual walker, but to the walkers in the elementary space volume 

[x, x + dx]. Also in this case, it depends on � as walkers take into account the geometry of the venue in developing 
their walking strategy. Phenomenological models are needed to describe the acceleration which acts on all individuals 
in the elementary volume of space due to the surrounding individuals and geometry of the venue. First order models
use only the first equation closed by a phenomenological model linking the local mean velocity to local density and 
density gradients, i.e., V = V [ρ; �].

Derivation of models at the macroscopic scale has been conceptually introduced by Henderson [57] and subse-
quently transferred to a framework with some analogy to fluid dynamics by Hughes [60,61], where a method is 
developed to compute walkers trajectories corresponding to a criterion to optimize the search of the exit. Hughes ap-
proach has motivated papers devoted to analytic topics such as [4,5]. Later this method has been approached by mean 
field games and optimal transport theory as documented, among others, by [29,31,48].

The book [38] provides an exhaustive presentation of macroscopic type models, including those derived by conser-
vation of probability measures. Generally, first order models are used with a few exceptions whereby for second order 
models see [17,29,31,48]. An important problem, not yet solved, is the modelling of the strategy by which pedestrians 
organise their movement in stressful conditions that can be induced by overcrowding.
• Mesoscale: The system is described by the probability distribution function over the microscopic state of walkers 
defined by their position x ∈ � and velocity

v ∈ Dv ⊂R
2 : f = f (t,x,v) =: [0, T ] × � × Dv →R+,

such that f (t, x, v) dx dv denotes the number of active particles whose state, at time t , is in the interval [w, w + dw]. 
Macroscopic quantities are obtained by velocity weighted moments. As an example local density and flux are obtained 
as follows:

ρ[f ](t,x) =
∫
Dv

f (t,x,v) dv , q[f ](t,x) =
∫
Dv

v f (t,x,v) dv. (3)

The dynamics is obtained by a balance of microscopic entities in the elementary volume of the space of microscopic 
state. This amounts to equating the transport of f to the net flow (inlet minus outlet) due to interactions. The formal 
result is as follows:

(∂t + v · ∇x) f (t,x) = (
J+ − J−)[f,�](t,x,v), (4)

where J+ and J− are, respectively, the inlet and outlet fluxes induced by interaction among walkers and between 
them and the walls, obstacles and walls. Interactions are nonlinearly additive and nonlocal in space. Theoretical tools 
of evolutionary theory [72], in this case evolutionary [58,74], stochastic [23] games, are used to model interactions.

The literature on modelling by kinetic theory methods is far less developed than the one at the other scales, how-
ever various innovative contributions have been proposed in recent years. The hints proposed in [18,24,59] have been 
developed in [13] for a dynamics in unbounded domains. Paper [20] has shown how the modelling of interactions with 
boundaries and internal obstacles can be developed. These two papers introduce the concept of behavioural crowd, 
namely of a dynamic which depends on the strategy and behaviours that walkers develop based also on interactions, 
mechanical and social, with the surrounding walkers. Validation of such models has been undertaken in [21]. A hier-
archy of models is studied in [40], which provides an important conceptual framework for further developments.

A common feature at all scales is the modelling of the strategy by which walkers modify their dynamics, respec-
tively at each scale, the individual acceleration, the collective acceleration and the individual modification of velocity. 
These are similar quantities, as their difference is related to the scaling only, depends on the shape and quality of the 
venue � and α, respectively.

Empirical data [39,69,71,80,81,83] can contribute to modelling the aforementioned terms as well as on the val-
idation of models [21]. However, it is worth mentioning most of the results focus on the so called velocity and 
fundamental diagrams, namely mean velocity and flux against density, while additional work needs to be developed 
toward understanding individual behaviours.
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Table 1
Walker’s decision process. Firstly walkers change the direction of movement and, afterwards, they modify their speed in probability. Walkers who 
are close to a wall, reduce the velocity component normal to the wall linearly with the distance from the wall itself, keeping the speed constant. 
Square brackets denote functional dependence.

Condition Transition Probability

Interactions ∀ θ∗ θ∗ → θ̃ = θ(p)[ρ, ξ ] 1
v∗ ≤ ξ v∗ → ṽ = ξ + γ (1 − ρ̃p[ρ, ξ ])(γ ξLIM − ξ) γ (1 − ρ̃p[ρ, ξ ])

v∗ → ṽ = v∗ 1 − γ (1 − ρ̃p[ρ, ξ ])
v∗ > ξ v∗ → ṽ = ξ − ρ̃p[ρ, ξ ]ξ (1 − γC)ρ̃p[ρ, ξ ]

v∗ → ṽ = v∗ 1 − (1 − γC)ρ̃p[ρ, ξ ]
Boundary d∗ < dw θ̃ → θ = θ(w) 1

ṽ → v = ṽ 1

4.2. Selection of the mesoscopic scale and of a mathematical model

Our paper has selected the mesoscopic scale as the most appropriate to capture the complexity features of human 
crowd which have been presented in Section 2. These features play a key role in the study of evacuation phenomena. In 
more detail, the heterogeneity of walkers can be taken into account by the representation of the system by a probability 
distribution. The modelling of interactions by theoretical tools of game theory allows to include all possible trends 
of walkers interacting with each other and with the venue where they walk. Subdivision into functional subsystems 
allows the inclusion of different typologies of walkers from leaders to groups that need physical support to evacuate.

Let us consider a crowd which, according to the modelling approach proposed in the preceding section, can be sub-
divided into n functional subsystems (FSs). The state of the overall system is described by the one-particle distribution 
functions fi = fi(t, x, v) with i = 1, . . . , n.

The mathematical model used in the present work has been described in Ref. [21] and reads

(∂t + v · ∇x) fi(t,x,v) = ηA

⎛
⎝∫
V

A[ρ, ξ ;�](v∗ → v)fi(t,x,v∗) dv∗ − fi(t,x,v)

⎞
⎠

+ ηB(x)

⎛
⎝∫
V

B(v∗ → v)fi(t,x,v∗) dv∗ − fi(t,x,v)

⎞
⎠ (5)

where ηA and ηB are the interaction rates between walkers and between walker and walls, and A and B are the 
transition probability densities which models the decision process based on which walkers modify their velocity. In 
Eq. (5), square brackets have been used to denote the functional dependence of the transition probability density A
from the local mean density and velocity. Therefore, in spite of its linear appearance, the proposed crowd model is a 
strongly nonlinear set of integro-differential equations.

The interaction rate between walkers, ηA, is assumed to be constant while it is supposed that walkers interact with 
walls only when they are sufficiently close to them. Accordingly the interaction rate ηB is space dependent. The main 
features of the the transition probability densities are summarized in Table 1.

Interactions between walkers are assumed [20,21] to modify their dynamics firstly by changing the direction of 
movement and, afterwards, by modifying the speed

A[ρ, ξ ,�](v∗ → ṽ) =Av[ρ, ξ ](v∗ → ṽ)Aθ [ρ, ξ ](θ∗ → θ̃ ) (6)

where the velocity has been decomposed in speed and direction v = {v, θ}.
Three types of stimuli are assumed to contribute to the modification of walking direction, namely, the desire to 

reach a defined target, the attraction toward the mean stream and the attempt to avoid overcrowded areas. These are 
represented by the three unit vectors ν(t)

i , ν(s)
i , and ν(v), respectively. It is expected that at high density, walkers try to 

drift apart from the more congested area moving in the direction of ν(v). Conversely, at low density, walkers head for 
the target identified by ν(t)

i unless their level of anxiety is high in which case they tend to follow the mean stream as 

given by ν(s). Accordingly, the preferred direction is defined as
i
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ν
(p)
i =

ρ̃ν(v) + (1 − ρ̃)
βν

(s)
i + (1 − β)ν

(t)
i∥∥∥βν

(s)
i + (1 − β)ν

(t)
i

∥∥∥∥∥∥∥∥∥ρ̃ν(v) + (1 − ρ̃)
βν

(s)
i + (1 − β)ν

(t)
i∥∥∥βν

(s)
i + (1 − β)ν

(t)
i

∥∥∥
∥∥∥∥∥∥
, (7)

where ρ̃ = ρ/ρMAX, being ρMAX the highest admissible packing density, and

ν(v) = − ∇xρ

‖∇xρ‖ , ν
(s)
i = ξ

‖ξ‖ (8)

In Eq. (7), β ∈ [0, 1] is a parameter which models the sensitivity to the stream with respect to the search of vacuum 
and it is supposed modelling, to some extent, the level of anxiety of walkers.

The transition probabilities for angles is thus defined

Aθ [ρ, ξ ](θ∗ → θ̃ ) = δ
(
θ̃ − θ(p)

)
(9)

where the preferred angle of motion, θ(p), is obtained from Eq. (7) through the relation ν(p)
i = (cos θ(p), sin θ(p)).

For what speed is concerned, we first introduce the perceived density along the direction θ(p) which reads

ρ∗ = ρ∗[ρ] = ρ + ∂pρ√
ρ2

MAX + (∂pρ)2

[
(ρMAX − ρ)H(∂pρ) + ρ H(−∂pρ)

]
, (10)

where ∂p denotes the derivative along the direction θ(p) while H(·) is the Heaviside function H(· ≥ 0) = 1, and 
H(· < 0) = 0. According to Eq. (10), it results

∂pρ → ∞ ⇒ ρp → ρMAX , ∂pρ = 0 ⇒ ρp = ρ , ∂pρ → −∞ ⇒ ρp → 0 .

Bearing all above in mind, two cases are distinguished:

• The walker’s speed is greater than (or equal to) the mean speed. The walker either maintains its speed or decelerate 
to a speed ξd which is as much lower as density become higher. It is reasonable to assume that the probability to 
decelerate, pd , increases with the congestion of the space, the quality of the venue and the anxiety level of the 
walker measured by the parameters α and β , respectively.

• The walker’s speed is lower than the mean speed. The walker either maintains its speed or accelerate to a speed 
ξa which is as much higher as density become lower, the higher is the gap between the mean speed and the 
preferred speed and the goodness are the environmental conditions. It is reasonable to assume that the probability 
to accelerate, pa , decreases with the congestion of the space and with the badness of the environmental condition 
and the anxiety level of the walker.

Accordingly the transition probability density for the speed reads

Av[ρ, ξ ](v∗ → ṽ) = {paδ (ṽ − ξa) + (1 − pa) δ (ṽ − v∗)}H (ξ − v∗)
× {pdδ (ṽ − ξd) + (1 − pd) δ (ṽ − v∗)}H (v∗ − ξ) , (11)

where

ξd = ξ − ρ̃pξ, pd = (1 − γC)ρ̃p, (12)

and

ξa = ξ + γ (1 − ρ̃p)(γ ξLIM − ξ), pa = γ (1 − ρ̃p). (13)

In Eqs. (12) and (13), ρ̃p = ρp/ρMAX, γ = αβ where the parameter α measures the quality of the area in which 
the crowd is located, and the constant C < 1 has been introduced so as to take into account that the probability to 
decelerate is not naught even if γ = 1.
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The most important feature to be taken into account in modelling the interactions between walkers and walls is its 
non-locality, as walkers are not classical particles and modify their velocity before encountering the wall. Accordingly, 
it is supposed that walkers whose distances from the wall, d , are within a specified cutoff, dw, modify their velocity 
ṽ to a new velocity v(w), by reducing the normal component linearly with the distance from the wall but keeping the 
speed constant, that is

v(w) = d

dw

(ṽ · n)n + sign(ṽ · t)
[
ṽ2 − d2

d2
w

(ṽ · n)2
]1/2

t, (14)

where n and t are the normal and tangent to the wall.
The transition probability density B is then defined as

B(ṽ → v) = δ
(
θ − θ(w)

)
δ
(
v − v(w)

)
, (15)

where v(w) = ṽ and θ(w) is the direction of the velocity v(w) defined by Eq. (14) through the relation θ(w) =
v(w)/v(w) = (cos θ(w), sin θ(w)).

4.3. Critical analysis

A mesoscopic model has been selected out of the existing literature. It has been validated [21] by using empirical 
data according to the hallmarks reported in Section 3. In summary, this model has shown the ability to reproduce 
empirical data available in steady uniform conditions, namely the velocity and fundamental diagrams. In addition, 
some emerging behaviours have been reproduced such as line fingering in corridors, overcrowding around outlet 
doors, increase of the evacuation time due to stress conditions. The simulations presented in the next section will 
show some interesting emerging behaviours in evacuation dynamics. However, despite the success of the model, 
several problems remain open. Therefore, some of them are brought to the attention of the reader as possible future 
research perspectives. In detail:

1. Empirical data almost always, refer to steady uniform flow conditions and provide an information on macroscopic 
quantities. On the other hand, the modelling approach needs data on the interaction at the microscopic scale far 
from steady conditions. In addition, the knowledge on the variety of emerging behaviours is still quite limited. 
Hopefully, future research activity will provide additional information on empirical data to improve the present 
state of the art [35,36].

2. Empirical data on microscopic behaviours should be addressed to tackle the conceptual difficulty of modelling 
the dependence of walkers’ dynamics on α and �, so that a careful modelling of interactions avoid the artificial 
insertion (as it happens in a great variety of models) of the velocity diagram into the model. Indeed, such a 
diagram should be an emerging collective behaviour of interactions. Enlightening the link between microscopic 
and macroscopic dynamics deserves special attention [102].

3. Social dynamics in crowds refers to interaction of walkers that exchange their psychological attitude toward a 
consensus to a common walking strategy. The model takes into account this specific feature focusing on stressful 
conditions that might reduce safety conditions. An interesting topic, still to be developed, is the diffusion of other 
types of behaviours. An example is given by the presence of rioters in a democratic manifestation, when they 
attempt to obtain consensus from the other pacific demonstrators. A deep understanding of collective learning [30]
can contribute to modelling social interchanges that can include violent acts [46] and transition into violence due 
to communications with rioters.

4. Multiscale problems: An important topic consists in the derivation of macroscopic models from the underlying 
description at the microscopic scale has been developed in [12] following the approach previously applied to 
vehicular traffic [16], while coupling pedestrian traffic to vehicular traffic has been developed in [27]. These 
multiscale methods tackle the criticisms of the heuristic approach to the derivation of macroscopic models which 
might not be properly related to the dynamics at the microscopic scale.

5. Computational problems should be referred to the use of the simulations. In some cases, such as real time use 
of simulations, the computational time should be less than or equal the real one, although paying the price of 
accuracy. Otherwise, models are required to be as accurate as possible according to the validation rules presented 
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in Section 3. This issue, related to the dynamics of slow and fast thinking [63], that can play an important role in 
crisis managing.

The critical analysis of this section should also remark that a great deal of activity has still to be done to provide 
mathematical models useful for safety management. As a matter of fact, some recent papers [68,88,89,100] have well 
expressed this need. It has been shown that the model in [21] covers a certain amount of needs such as consistency 
with complexity features, validation based on empirical data, and descriptive ability of stress conditions that appear 
during evacuation. However, additional work needs to be developed to improve its predictive ability. In particular, two 
topics can be brought, as possible examples, to the attention of the reader. In detail:

1. The parameter β accounts for stress conditions and plays an important role in the overall dynamics. It can evolve 
in time, hence it should be treated as an additional internal variable. The modelling of the probability density A
should include also individual modification of β due to interactions. This approach is deemed to model propaga-
tion of the stress conditions.

2. An important issue to be accounted for is the possible subdivision in the crowd of democratic individuals and 
rioters followed by transitions across these two groups. This important dynamics can be described, with some 
analogy with the modelling of biological mutations [19], by inserting in the games also the probability of transition 
across the two groups.

Definitely, future research activity will focus on these topics, where the challenging task is the modelling of in-
teractions and their insertion into a mathematical structure. This perspective cannot be confined only to kinetic type 
models. Future developments of macroscopic and microscopic models would be welcome in addition to the classical 
problems already mentioned in the preceding subsection. In particular, consistency with the complexity paradigms 
can be achieved by subdividing the crowd into different functional subsystems to approach a possible description 
of heterogeneity, while nonlinearly additive and nonlocal interactions should be modelled toward real behaviours in 
human crowds. The final target consists in the achievement of a unified modelling approach, such that models at 
the microscopic scale led to the derivation of models at the mesoscopic scale, and asymptotic methods [12] lead to 
macroscopic (hydrodynamic) models.

Models at all scales should also investigate the conjecture [9], nowadays considered valid for animal swarms, that 
each individual interacts with a fixed number of other individuals in a swarm rather than with all of them in their 
interaction domain. The mathematical formalization of this conjecture can be found in [25]. Is it true also for human 
crowds. Arguably, this is true, but depending on psychological conditions. We do not have empirical data for this 
topic on crowds. Therefore, this is a request from mathematical sciences to experimentalists active in the search of 
empirical data on crowd dynamics.

5. Sample simulations in complex venues and impact of stress conditions

This section tackles the fourth key problem and presents some simulations to test the predictive ability of the model 
presented in Section 4 as well as to enlighten the dynamics in stress conditions.

Understanding how the crowd behaves in extreme situations
such as stress induced by perception of danger.

Computational results are obtained by Monte Carlo particle methods first introduced by Bird [26] and subsequently 
developed by various authors by adjusting the method to each specific system under consideration, see [10,75] and 
many others. A computational scheme for the specific application to crowd dynamics have been developed in [21]. 
Compared to deterministic methods of solution [6,52], the particle simulations provide some important advantages 
such as the ability to deal with complex geometries and to easily account for sophisticated individual decision pro-
cesses. It is worth noticing that, although particle methods are computationally very efficient, parallel computing may 
be necessary to reduce the computational burden. In this respect, the possibility of exploiting the massively parallel 
architecture of modern Graphics Processing Units would be certainly of interest [49,50].
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Fig. 1. Geometry of the venue.

Simulations can contribute to crisis management not only by showing that the model can provide an accurate 
description of the crowd dynamics, but also by verifying how the evacuation time increases under stress conditions 
and the identification of risk situation due to an excessive concentration of walkers in the same area. Indeed, safety 
conditions require that local density remains below a safety level. These dynamics depend on venue parameters. 
Hence, simulations can contribute to optimise the areas of the venue for crowds.

A sketch of the initial conditions and of the geometry of the venue is shown in Fig. 1 consisting of three rooms 
connected by the doors d1, d2, and d3, while the exit is located in the upper right corner at door d4. In detail, the 
following dynamics are considered: A group of walkers concentrated in a circular area, of radius 3 m, initially just 
standing. Then, when an evacuation information is given, the original group symmetrically divides into two groups 
moving toward the closest between the doors d1 and d2. Walkers who do not get through door d1 before it suddenly 
closes at t = 20s, are obliged to change direction and move to door d2 in the attempt to reach door d4.

The evacuation time corresponding to two different initial conditions is reported in Fig. 2, that shows the ratio be-
tween the walkers in the room and their initial number versus time for different density of the crowd and with/without 
the increase of stress after the incident occurrence. Flow patterns are shown in Fig. 3 for a sample of 50 walkers, with 
an onset of stress conditions modelled by a sudden increase of the parameter β , when the door closes.

These simulations only cover a small part of the overall study which, thank to several possible conditions and 
parameter sensitivity analysis, have allowed to draw the following conclusions:

• Independently on the crowd density, at the first stage of the evacuation process, the higher is β , the faster is 
the evacuation time (dashed lines are above solid lines). This is not unexpected since the walkers mean velocity 
increases with β . However, in the long run stressful conditions increase the evacuation time (dashed lines are 
below solid lines).

• For equal stress conditions, the higher the crowd density, the slower the evacuation process (black lines are below 
red lines). Indeed, areas with high density arise from the dynamics, thus increasing the congestion level and 
consequently reducing the local mean velocity.

• Modifications of the venue can be studied with the aim of improving the quality of the evacuation dynamics, 
mainly to reduce high concentration of crowds.

6. Decision making toward information management and crisis response

This section takes advantage of the computational modelling and analysis of stress conditions to deal with the fifth 
key problem posed at the beginning of this paper:

What has been done and should be done to respond effectively to crisis situations.
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Fig. 2. Fraction of walkers in the room versus time. Evacuation of a crowd composed of 50 (black lines) and 100 (red lines) walkers, when the 
parameter β modifies from 0.5 to 0.8 (solid lines) and remains at the constant value of 0.5 (dashed lines). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Density contour plots of a crowd composed by 50 walkers evacuating the room at different instants of time. Panic modifies β from 0.5 to 
0.8 when the door closes.

Therefore, this section is devoted to understand the needs of decision makers and consequently, how the informa-
tion delivered by simulations can be used to support the decision making during a crisis situation. As we have seen the 
dynamics of evacuation can generate a crisis situation whenever safe conditions appear to be lost, generally when the 
dynamics generate situations of overcrowding. Then, support to the crisis manager is needed to select the most appro-
priate strategy to reduce danger. Several technical difficulties need to be tackled. For instance, in most cases, decision 
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making has to be developed in a very short time [89] and the information is not complete [79] and various possible 
alternatives can be considered [45]. The support that can be given to managers of evacuation processes covers various 
aspects. The first one consists of general protocols, optimized by past experience, which can be applied in a variety of 
situations, namely for different venues, generally specialised for similar environments, e.g. buildings, under-grounds, 
airports, and so on, which require somewhat different strategies. More refined protocols can be obtained by further 
specialisation for well-defined venues.

Two aspects of the general problem can be enlightened:

1. Training crisis managers by visualisation of a big number of simulations stored in a database corresponding to 
different venues, crowd features and actions. Beyond visualization, managers can work out the most appropriate 
actions to dangerous situations.

2. Selection of the most appropriate actions during an evacuation process.

The first step needs the design of a database repository of big data, while the second step needs the design of a 
predictive engine to support the aforementioned actions. The literature on database repositories of big data is rapidly 
growing in this century as witnessed by the report [34] and by paper [41], as well as by the reports posted in the 
web-sites [94–97].

Simulations to be stored in the database need to be validated also referring to the specific venue, where the dynamics 
occur [65,78]. Simulations should refer to evacuation dynamics [1,76,87], and need to be specifically related to support 
crisis [89,92,101].

The conceptual problem consists in understanding how these data can be used for predictive purposes or for model 
validation. The various methods to treat these large amounts of data still need to be properly developed to define 
an emerging data science which aims at improving the decision making process toward cost reductions and reduced 
risk. Therefore, approaches toward the interpretation of large data stored in databases should go beyond the technical 
problem of data compression and their statistical interpretation. More sophisticated is the problem of designing the 
predictive engine as different situations have to be compared and the selection of the most appropriate action requires 
an appropriate selection of the distance (metric) between different dynamical systems. In fact, such a distance can 
provide the correct information to decide how far a simulation is close to the real dynamics observed by the crisis 
manager. Decision makers are being forced to weigh the interaction of numerous factors that characterize the situation 
and the corresponding most effective decision [85].

Other aspects for decision support consist of information management, which can be split into different parts:

• Accessing information: Virtual representation of real crowd dynamics might deliver important information for 
crisis managers. Although evacuation strategies depend on several factors a real time forecast of the crowd move-
ments (strategies) might help the crisis manager to identify risk situations due to changing crowd conditions;

• Interpreting information: Human behaviour has to be taken into account in decision making/crisis response;
• Prediction of crowd behaviour: Decision support could be optimised by using crowd model results. To trust the 

modelling, the decision maker should know what is inside and should understand the different parameters, their 
level of uncertainty, and the assumptions, for example on social interchanges.

Crises management is a challenging topic, which currently involves scientific dispute [67] and it is difficult, at 
present, to find a commonly shared theory. Focusing specifically on the use of crowd simulation, the approach can 
take advantage of a recent paper [3], where a systems approach to social dynamics is proposed. This is an approach 
based on the following sequence of actions that can be transferred to the specific class of problems treated in our paper 
as follows:

1. Characterization of the evacuation venues;
2. Characterization of the main features of the crowd;
3. Implementation of a number of possible simulations corresponding to both aforementioned classifications;
4. Implementation of a number of simulations corresponding to possible actions to control the evacuation process;
5. Scoring the output of the dynamics mentioned in Item 4;
6. Define a metric to compare a real situation to those stored in the database;
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Fig. 4. Rationale of the support process.

7. Select a number of simulations close to the real situation and select, out of them, the most appropriate action 
based on a weighted combination of the score and the metric distance defined in Item 6.

Namely, the best strategy is selected by the simulation which shows the highest evaluation from a weighted linear 
superposition of the similarity evaluation and the score given to the output of the selected simulation. The selection 
by similarity rules should account for likelihood principles [51]. The rationale of the support process, namely the core 
of the predictive engine, is shown in Fig. 4.

This process succeeds to provide a technical response to the two objectives defined in this section so that the 
heuristic approach based on personal bias is avoided. The reliability of the learning machine depends on the validity 
of the simulations therein stored. Therefore, future research activity should be intensively addressed to improve the 
modelling approach also in connection with the design of engines to support decision making. Another aspect to 
address for future research is the reliance of decision makers before or during a crisis upon the technical modelling 
concepts and results. The conceptual difference of this approach compared with [104] is that it can provide a real time 
interpretation of ongoing crowd dynamics rapidly related to optimised possible decision processes.

7. Critical analysis

The overview on crowd dynamics and safety problems presented in this paper has shown that the literature in the 
field can give valuable contributions to the crisis management of human crowds in evacuation situations. However, 
it is worth stressing that several problems are still open and need further research activity. Some perspectives can be 
given out of said overview and critical analysis.

Without claim of completeness, some remarks can be referred to the three sentences quoted, from [99], in Section 1:

1. The importance of understanding human behaviour in crowds is undisputed. It is required for ensuring that proper 
support can be given to crowd managers in preparation and during crowd event: This important hint indicates 
that understanding social and dynamical behaviours of a crowd is the absolutely necessary basis for any decision 
process related to safety. The problem consists not only of acquiring this type of information, but also support 
practical decision making. Our paper has put in evidence that any approach should consider the crowd as a living, 
hence complex, system. Hence, understanding the complexity features of human crowd is very important also in 
designing computational models.
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2. Crowd management involves accessing and interpreting a wide variety of information sources, predicting crowd 
behaviours as well as deciding the use of a range of possible, highly context-dependent intervention mechanisms:
Indeed, a broad variety of information sources is very important. Here we simply stress that the design of the pre-
dictive engine can contribute to select the available information. However, data to be inserted should be properly 
assessed. Otherwise, the information can be even misleading.

3. The authors agree that decision support can be aided by the inclusion of relevant, validated and practical use of 
crowd models; and the existing literature on crowd modelling can only partially support crisis management. As 
shown in this paper, further parameters could be modelled to increase the relevance and accuracy of models used 
for this purpose. Indeed, new modelling techniques are often required to achieve this as proposed in this paper. 
These techniques can account for some of the identified enhancements, though we claim to have covered them 
exhaustively.

Partially positive answer in the last issue indicates that future research activity on crowd modelling should focus on 
a deeper integration of psychological and behavioural features in models. This effort can be supported by empirical 
data on crowd detection specifically related to social behaviours.
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